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Japan

Received 16 July 1998

Abstract. Free field realization of vertex operators for level-two modules ofUq(ŝl(2)) is shown
through the free field realization of the modules given by M Idzumi (Int. J. Mod. Phys.A 9
4449Preprint hep-th/9307129). We constructed type I and II vertex operators when the spin of
the associated evaluation module is1

2 and type IIs for the spin 1.

1. Introduction

Vertex operators for the quantum affine algebraUq(ŝl(2)) have played essential roles in the
algebraic analysis of solvable lattice models since the pioneering works of [1–3]. In these
works, which analyse theXXZ model, type I vertex operators are identified with half-
infinite transfer matrices as their representation-theoretical counterpart and type II vertex
operators are interpreted as particle creation operators. To perform concrete computation
such as a trace of composition of vertex operators, we need free field realization of modules
and operators. In the said example of theXXZ model, the integral expressions ofn-point
correlation functions which are special cases of the traces are obtained through bosonization
of the level-one module ofUq(ŝl(2)).

Motivated by these results, Idzumi [4, 5] constructed level-two modules and type I vertex
operators accompanied by spin 1 evaluation modules forUq(ŝl(2)) in terms of bosons and
fermions and then calculated correlation functions of a spin 1 analogue of theXXZ model.
The purpose of this paper is to extend Idzumi’s free field realization to other kinds of vertex
operators i.e. type I and II vertex operators for the level-two modules associated with the
evaluation module of spin12 and the type IIs for the spin 1. The results are given in section 3
and their derivation is discussed in the first case in section 4. The results together with
[4, 5] give the complete set of vertex operators for the level-two module ofUq(ŝl(2)) and
enable one to calculate form factors of the spin 1 analogue of theXXZ model.

Recently Jimbo and Shiraishi [7] showed a coset-type construction for the deformed
Virasoro algebra with the vertex operators forUq(ŝl(2)). They constructed a primary
operator for the deformed Virasoro algebra as a coset-type composition of vertex operators
which may be denoted as(Uq(ŝl(2))k⊕Uq(ŝl(2))1)/Uq(ŝl(2))k+1. We hope that our results
will be helpful for extending this work to the deformed supersymmetric Virasoro algebra
through(Uq(ŝl(2))k ⊕ Uq(ŝl(2))2)/Uq(ŝl(2))k+2.

† E-mail address: ss77070@komaba.ecc.u-tokyo.ac.jp
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2. Free field realization of the level-two module

2.1. Convention

In the following we will useU to denote the quantum affine algebraUq(ŝl(2)). Unless
otherwise mentioned, we follow the notations of [4, 5]. As for the free field representation,
we slightly modify the convention.

The quantum affine algebraU is an associative algebra with unit 1 generated by
ei, fi(i = 0, 1), qh(h ∈ P *) with relations

q0 = 1 qhqh
′ = qh+h′

qheiq
−h = q〈h,αi 〉ei qhfiq

−h = q−〈h,αi 〉fi
[ei, fi ]† = δij ti − t

−1
i

q − q−1
(ti = qhi )

e3
i ej − [3]e2

i ej ei + [3]eiej e
2
i − ej e3

i = 0

f 3
i fj − [3]f 2

i fjfi + [3]fifjf
2
i − fjf 3

i = 0

whereP = Z30+Z31+Zδ is the weight lattice of the affine Lie algebrâsl(2) andP * is
the dual lattice toP with the dual basis{h0, h1, d} to {30,31, δ} with respect to the natural
pairing 〈 , 〉 : P × P * → Z. We also use current-type generators introduced by Drinfeld
[11]

[ak · al ] = δk+l,0 [2k]

k

γ k − γ−k
q − q−1

KakK
−1 = ak Kx±k K

−1 = q±2x±k

[ak, x
±
l ] = ± [2k]

k
γ∓|k|/2x±k+l

x±k+lx
±
l − q±2x±l x

±
k+l = q±2x±k x

±
l+1− x±l+1x

±
k

[x+k , x
−
l ] = γ

k−l
2 ψk+l − γ l−k

2 φk+l
q − q−1

whereψk, andϕk are defined as∑
k>0

ψkz
−k = K exp

{
(q − q−1)

∑
k>1

akz
−k
}

∑
k>0

φkz
k = K−1 exp

{
− (q − q−1)

∑
k>1

a−kzk
}
.

The relations between the two types of generators are

t1 = K t0 = γK−1 e1 = x+0 , e0t1 = x−1 f1 = x−0 t−1
1 f1 = x−1

0 .

The highest weight module and the evaluation module are described compactly in [4].
Commutation and anticommutation relations of bosons and fermions are given by

[am, an] = δm+n,0 [2m]2

m
{φm, φn}†† = δm+n,0ηm
ηm = q2m + q−2m.

† [A ,B] = AB − BA.
†† {A,B} = AB + BA.
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wherem, n ∈ Z+ 1
2 or ∈ Z for the Neveu–Schwarz sector or Ramond sector, respectively.

Fock spaces and vacuum vectors are denoted asFa, FφNS , FφR and |vac〉, |NS〉, |R〉 for
the boson andNS andR fermion, respectively. Fermion currents are defined as

φNS(z) =
∑
n∈Z+ 1

2

φNSn z−n φR(z) =
∑
n∈Z

φRn z
−n.

Q = Zα is the root lattice ofsl2 andF [Q] is the group algebra. We use∂ as

[∂, α] = 2.

2.2. V (230), V (231)

The highest weight moduleV (230) is identified with the Fock space

F (0)+ = Fa ⊗ {(Fφ
NS

even⊗ F [2Q])⊕ (FφNSodd ⊗ eαF [2Q])} (1)

subscripts even and odd represent the number of fermions. The highest weight vector is
|vac〉 ⊗ |NS〉 ⊗ 1. V (231) is

F (0)− = Fa ⊗ {(Fφ
NS

even⊗ eαF [2Q])⊕ (FφNSodd ⊗ F [2Q])} (2)

with the highest weight vector being|vac〉 ⊗ |NS〉 ⊗ eα. Note that

F (0) = F (0)− ⊕ F (0)+
F (0) = Fa ⊗ FφNS ⊗ F [Q].

The operators are realized in the following manner:

γ = q2 K = q∂
x±(z) =

∑
m∈Z

x±mz
−m = E±<(z)E±>(z)φNS(z)e±αz

1
2± 1

2∂

E±<(z) = exp

(
±
∑
m>0

a−m
[2m]

q∓mzm
)

E±>(z) = exp

(
∓
∑
m>0

am

[2m]
q∓mz−m

)
and

d = −∂
2

8
+ (λ, λ)

4
−
∞∑
m=1

mNa
m −

∑
k>0

kN
φNS

k (3)

Na
m =

m

[2m]2
a−mam N

φNS

k = 1

ηm
φNS−mφ

NS
m (m > 0) (4)

where the highest weight vector of the module should be substituted forλ of (3).

2.3. V (30+31)

The moduleV (30+31) is identified with

F (1) = Fa ⊗ FφR ⊗ e
α
2F [Q] (5)

where

φR0 |R〉 = |R〉.
The highest weight vector is identified with|vac〉 ⊗ |R〉 ⊗ e

α
2 .

Operators are constructed in the same way as before except that subscripts for fermion
sector areR instead ofNS.
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3. Free field realizations of vertex operators

Let V, V ′ be level-two modules andV (k)z be a spink/2 evaluation module ofU . Vertex
operators we will consider areU -linear maps of the following kinds [8, 9]

8
V ′,k
V (z) : V −→ V ′ ⊗ V (k)z (6)

9
k,V ′
V (z) : V −→ V (k)z ⊗ V ′. (7)

Vertex operators of the form (6), (7) are called type I and II, respectively. Components of
vertex operators are defined as

8(z)
V ′,k
V =

k∑
n=0

8n(z)⊗ un 9(z)
k,V ′
V =

k∑
n=0

un ⊗9n(z).

3.1. Type I vertex operators for level two and spin1
2

We show free field realization of type I vertex operators of the following kinds

8
30+31,1
23i

(z) : V (23i) −→ V (30+31)⊗ V (1)z (8)

8
23i,1
30+31

(z) : V (30+31) −→ V (23i)⊗ V (1)z (9)

wherei = 0 or 1.
Under the free field realization of level-two modules reviewed in secton 2, the explicit

forms of the components of the vertex operators in (8) are

81(z) = BI,<(z)BI,>(z)�RNS(z)eα/2(−q4z)∂/4 (10)

80(z) =
∮

dw

2π i
BI,<(z)E

−
<(w)BI,>(z)E

−
>(w)�

R
NS(z)φ

NS(w)e−α/2(−q4z)∂/4

×w−∂/2(−q4zw3)−
1
2

(
w
q3z
; q4

)
∞(

w
qz
; q4

)
∞

{
w

1− q−3w/z
+ q5z

1− q5z/w

}
(11)

BI,<(z) = exp

( ∞∑
n=1

[n]a−n
[2n]2

(q5z)n
)

(12)

BI,>(z) = exp

(
−
∞∑
n=1

[n]an
[2n]2

(q3z)−n
)
. (13)

The integrand of80(z) has poles only atw = q5z, q3z except forw = 0,∞ and the contour
of integration enclosesw = 0, q5z, details are discussed in section 4. For those of (9) we
just replace�RNS(z) with �NSR (z) in (10), (11).

The fermionic part�(z)’s are maps between different fermion sectors and satisfy

φNS(w)�(z)NSR =
(−q4z

w

)1/2
(
w
q3z
; q4

)
∞

(
q7z

w
; q4

)
∞(

w
qz
; q4

)
∞

(
q5z

w
; q4

)
∞

�(z)NSR φR(w) (14)

and exactly the same equation except subscripts for fermion sectors are exchanged. This
kind of mapping for fermions first appeared in high-energy physics theory as ‘fermion
emission vertex operator’ [6, 10]. Their free field realizations are

�RNS(z) = 〈NS|eY |R〉 (15)
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Y = −
∑
m>n>0

Xm,nϕ
R
−mϕ

R
−nz

m+n −
∑
k>l>0

Xk+1/2,l+1/2ϕ
NS
k+1/2ϕ

NS
l+1/2z

−k−l−1

+
∑
m>0
k>0

Xm,−k−1/2ϕ
R
−mϕ

NS
k+1/2z

m−k−1/2 (16)

�NSR (z) = 〈R|eY ′ |NS〉 (17)

Y ′ =
∑
k>l>0

Xk+1/2,l+1/2ϕ
NS
−k−1/2ϕ

NS
−l−1/2z

k+l+1+
∑
m>n>0

Xm,nϕ
R
mϕ

R
n z
−m−n

−
∑
k>0
m>0

X−k−1/2,mϕ
NS
−k−1/2ϕ

R
mz

k−m+1/2 (18)

ϕR0 = φR0 ϕR−m = φR−m
γmq

5m

ηm
ϕRm = φRm

γmq
−3m

ηm
(m > 0) (19)

ϕNSk+1/2 = φNSk+1/2
γkq
−3k−2

ηk+1/2
(−(−1)1/2) ϕNS−k−1/2 = φNS−k−1/2

γkq
5k+2

ηk+1/2
(−1)1/2 (k > 0)

(20)

Xk,l = q4k − q4l

1− q4(k+l)

γn = (q2; q4)n

(q4; q4)n

(q2z; q4)∞
(z; q4)∞

=
∞∑
n=0

γnz
n. (21)

(15), (17) are to mean that a matrix element is given by

R〈out|�RNS(z)|in〉NS = R〈out| ⊗ 〈NS|eY |R〉 ⊗ |in〉NS
for |out〉R ∈ FφR , |in〉NS ∈ FφNS .

We define the normalized vertex operators8̃(z)’s as follows

〈30+31|8̃1(z)|230〉 = 1 〈231|8̃1(z)|30+31〉 = 1

〈30+31|8̃0(z)|231〉 = 1 〈230|8̃0(z)|30+31〉 = 1

and these are given by

8̃
30+31,1
230

(z) = 8(z) (22)

8̃
231,1
30+31

(z) = (−q4z)−1/48(z) (23)

8̃
230,1
30+31

(z) = (−q4z)1/48(z) (24)

8̃
30+31,1
231

(z) = (−q6z)−1/28(z). (25)

3.2. Type II vertex operators for level two and spin1
2

We consider type II vertex operators of the following kind

9
1,30+31
23i

(z) : V (23i) −→ V (1)z ⊗ V (30+31) (26)

9
1,23i
30+31

(z) : V (30+31) −→ V (1)z ⊗ V (23i). (27)

Explicit forms of the components are as follows.

90(z) = BII,<(z)BII,>(z)�(q−2z)e−α/2(−q2z)−∂/4 (28)
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91(z) =
∮

dw

2π i
BII,<(z)E

+
<(w)BII,>(z)E

+
>(w)�(q

−2z)φ(w)eα/2(−q2z)−∂/4

×w∂/2(−q2zw3)−
1
2

(
w
qz
; q4

)
∞(

qw

z
; q4

)
∞

{
w

1− q−3w/z
+ q3z

1− qz/w
}

(29)

BII,<(z) = exp

(
−
∞∑
n=1

[n]a−n
[2n]2

(qz)n
)

(30)

BII,>(z) = exp

( ∞∑
n=1

[n]an
[2n]2

(q3z)−n
)
. (31)

The integrand of91(z) has poles only atw = q3z, qz except forw = 0,∞ and the contour
of integration enclosesw = 0, qz. Subscripts for fermion sectors are abbreviated.

Normalized vertex operators are defined by the conditions

〈30+31|9̃1(z)|230〉 = 1 〈231|9̃1(z)|30+31〉 = 1

〈30+31|9̃0(z)|231〉 = 1 〈230|9̃0(z)|30+31〉 = 1

and these are given by

9̃
1,30+31
230

(z) = (−q)−19(z) (32)

9̃
1,231
30+31

(z) = −(−q6z)−1/49(z) (33)

9̃
1,230
30+31

(z) = (−q2z)1/49(z) (34)

9̃
1,30+31
231

(z) = (−q2z)1/29(z). (35)

3.3. Type II vertex operators for level two and spin 1

When the spin of the evaluation module is 1, the type II vertex operators do not contain
any fermion emission vertex operators:

9
2,23i
23i

(z) : V (23i) −→ V (2)z ⊗ V (23i) (36)

9
2,30+31
30+31

(z) : V (30+31) −→ V (2)z ⊗ V (30+31). (37)

Explicit form of the components is as follows

90(z) = FII,<(z)FII,>(z)e−α(−q2z)−∂/2+1 (38)

91(z) =
∮

dw

2π i
FII,<(z)E

+
<(w)FII,>(z)E

+
>(w)φ(w)

×
(

w

−q2z

)∂/2
w−1/2

{
1

1− w
q4z

+ q4z

w
(
1− z

w

)} . (39)

The integration contour encircles polesw = 0, z but the polew = q4z lies outside of it.

92(z) =
∮

dw2

2π i

∮
dw1

2π i
FII,<(z)E

+
<(w1)E

+
<(w2)FII,>(z)E

+
>(w1)E

+
>(w2)

×eα
(
w1w2

−q2z

)∂/2
(w1w2)

−1/2

 1

1− w1
q4z

+ q4z

w1

(
1− z

w1

)


×
[2]−1 : φ(w1)φ(w2) :

 w1− q−2w2

−q2z
(

1− w2
q4w1

) + 1− w1
q2w2

1− z
w2
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+
(w1w2)

1/2
(

1− w2
w1

)
−q2z

(
1− q2w2

w1

) (
1− w2

q4z

) −
(
w1
w2

)1/2 (
1− w1

w2

)
(

1− q2w1

w2

) (
1− z

w2

)
 . (40)

We have to prepare two contours because of the fermionic part and one is for the term
including : φ(w1)φ(w2) : and the other is for the rest. The former satisfies| w2

q4w1
| <

1, |w2| > |z| and the same condition satisfied by the contour for91 with substitution
w = w1. The latter satisfies|q2w2| < |w1| < |q−2w2| and the same conditions as91 with
w = w1, w2

FII,<(z) = exp

(
−
∑
m>0

a−m
[2m]

(qz)m
)

(41)

FII,>(z) = exp

(∑
m>0

am

[2m]
(q3z)−m

)
. (42)

Under the normalization

〈230|9̃0(z)|231〉 = 1 〈231|9̃2(z)|230〉 = 1

〈30+31|9̃1(z)|30+31〉 = 1

9̃(z)’s are given by

9̃
2,230
231

(z) = 9(z) (43)

9̃
2,30+31
30+31

(z) = −(−q2z)−1/29(z) (44)

9̃
2,231
230

(z) = (−q4z)−19(z). (45)

4. Derivation

Taking830+31,1
23i

(z) as an example, we discuss the derivation of the results in the previous
section. Other cases can be treated in almost the same way.

4.1. General structure of80(z) and81(z)

Calculating

1(x)8(z) = 8(z)x
for x = Chevalley generators ofU andan, we get

0= [81(z), x
+
0 ]

K81(z) = [80(z), x
+
0 ]

0= x−0 80(z)− q80(z)x
−
0

80(z) = 81(z)x
−
0 − qx−0 81(z) (46)

0= 80(z)x
−
1 − qx−1 80(z)

q3z80(z) = 81(z)x
−
1 − q−1x−1 81(z) (47)

(qzK)−181(z) = [80(z), x
+
−1]

0= [81(z), x
+
−1]

K81(z)K
−1 = q81(z) (48)

K80(z)K
−1 = q−180(z)
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[am,81(z)] = (q5z)m
[m]

m
81(z) (49)

[a−m,81(z)] = (q3z)−m
[m]

m
81(z). (50)

From (48)–(50), we can speculate the form of81(z) as

81(z) = BI,<(z)BI,>(z)�RNS(z)eα/2y∂ .
To determiney and the fermionic part�RNS(z), we impose the following conditions on
81(z)

81(z)x
−
0 − qx−0 81(z) = (q3z)−1(81(z)x

−
1 − q−1x−1 81(z))

0= [81(z), x
+(w)]

which can be easily seen from (46), (47) and the proposition of section 4.4 of [12]. Then
we have (10), (14)

81(z) = BI,<(z)BI,>(z)�RNS(z)eα/2(−q4z)∂/4

φR(w)�RNS(z) =
(−q4z

w

)1/2
(
w
q3z
; q4

)
∞

(
q7z

w
; q4

)
∞(

w
qz
; q4

)
∞

(
q5z

w
; q4

)
∞

�RNS(z)φ
NS(w).

81(z) can be calculated through (46)

80(z) =
∮

dw

2π i

1

w
{81(z)x

−(w)− qx−(w)81(z)}

=
∮

dw

2π i
BI,<(z)E

−
<(w)BI,>(z)E

−
>(w)�

R
NS(z)φ

NS(w)e−α/2(−q4z)∂/4

×w−∂/2(−q4zw3)−
1
2

(
w
q3z
; q4

)
∞(

w
qz
; q4

)
∞

{
w

1− q−3w/z
+ q5z

1− q5z/w

}
.

To determine the contour of integration we have to find the poles of�RNS(z)φ
NS(w) and

this can be seen from

〈R|�RNS(z)φNS(w)|NS〉 =

(
w
qz
; q4

)
∞(

w
q3z
; q4

)
∞

〈NS|�NSR (z)φR(w)|R〉 =
(

w

−q4z

)1/2

(
w
qz
; q4

)
∞(

w
q3z
; q4

)
∞

.

Hence as a composite�RNS(z)φ
NS(w)

(
w

q3z
;q4
)
∞(

w
qz
;q4
)
∞

in the integrand has no poles and the contour

is the one enclosesw = 0, q5z.

4.2. Fermion emission vertex operator

In [6], equation (15) appears in the study of the Ising model and its free field realization is
given without any details. Thus we give the exposition of its derivation†. The main point of

† We are indebted to M Jimbo for explaining the details of [6].
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derivating free field realization of the fermion emission vertex operator�RNS(z) (15), (16)
is to expand�RNS(z) as

�RNS(z) =
∑
K,L

aK,Lφ
R
k1
φRk2

. . . |R〉〈NS|φNSl1 φNSl2 . . .

K = {ki} L = {li}
and to calculate the coefficientsaK,L. After normalizingφn suitably toϕn (19), (20), we
see ‘aK,L/(normalization factor)’ are identified with Pfaffians ofXk,l . With the aid of a
relation satisfied by Pfaffian

ω∧n = n!Pf(bij )x1 ∧ x2 . . . ∧ x2n

wherexk(16 k 6 2n) is a Grassmann variable and

ω =
∑

16i<j62n

bij xi ∧ xj

we get (15), (16).
Wick’s theorem can be generalized to the present situation and we only need to calculate

one- and two-point correlation functions foraK,L. To calculate these, we rewrite (14) and
introduce auxiliary operators

φ̃NS(w)�NSR (q−4) = �NSR (q−4)φ̃R(w) (51)

φ̃NS(w) = (−1)−1/2w1/2 (qw
−1; q4)∞

(q3w−1; q4)∞
φNS(w) (52)

φ̃R(w) = (qw; q4)∞
(q3w; q4)∞

φR(w) = f+(w)φR(w). (53)

We set�(z = q4) for simplicity. They are defined to satisfy

〈NS|φ̃NSn = 0(n < 0) φ̃Rn |R〉 = 0(n > 0) φ̃R0 |R〉 = |R〉
and this enables us to see that

〈NS|�NSR (q−4)φ̃R(z)φ̃R(w)|NS〉 = 〈NS|φ̃NS(z)�NSR (q−4)φ̃R(w)|NS〉
contains only negative (positive) powers ofz(w). On the other hand the expectation value
of

{φ̃R(z), φ̃R(w)} = f+(z)f+(w)
(
δ

(
q2w

z

)
+ δ

(
w

q2z

))
δ(z) =

∑
n∈Z

zn

with respect to〈NS|�NSR (q−4) and |R〉 is

〈NS|�NSR (q−4)φ̃R(z)φ̃R(w)|NS〉 + 〈NS|�NSR (q−4)φ̃R(w)φ̃R(z)|NS〉

= f+(z)f+(w)
(
δ

(
q2w

z

)
+ δ

(
w

q2z

))
where we normalize〈NS|�NSR (q−4)|R〉 = 1. We then get

〈NS|�NSR (q−4)φ̃R(z)φ̃R(w)|R〉 = 1− qw
1− q2w/z

+ 1− q−1w

1− q−2w/z
− 1.
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Expanding the last line of the following equation as in appendix C

〈NS|�NSR (q−4)φR(z)φR(w)|R〉 =
∑
n,m∈Z
〈NS|�NSR (q−4)φRn φ

R
m|R〉z−nw−m

= 1

f+(z)f+(w)

{
1− qw

1− q2w/z
+ 1− q−1w

1− q−2w/z
− 1

}
we have

〈NS|�NSR (q−4)φR−nφ
R
−m|R〉 = Xm,nγnγmqn+m (n,m > 0). (54)

Similar calculation yields

〈NS|φNSk+1/2�
NS
R (q−4)φR−n|R〉 = −(−1)1/2X−k−1/2,nγnγkq

n+k (n, k > 0) (55)

〈NS|φNSk+1/2φ
NS
l+1/2�

NS
R (q−4)|R〉 = −Xl+1/2,k+1/2γlγkq

l+k (k, l > 0). (56)

z-dependence of�RNS(z) is recovered with the equation

ζ d
R

�RNS(z)ζ
−dNS = �RNS(ζ−1z)

ζ−d
i

φi(z)ζ d
i = φi(ζ z)

〈i|di = di |i〉 = 0

(57)

wheredi ’s are the fermionic part ofd of (3)

di = −
∑
k>0

kN
φi

k (i = NS or R)

and satisfy

[di, φin] = nφn.
To derive (57), we multiply (14) byζ d

R

, ζ−d
NS

from left and right respectively.
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Appendix A. Boson

The following are useful formulae for normal ordering bosons. We set(z)∞ = (z; q4)∞ for
brevity.

BI,>(z)E
−
<(w) =

(qw/z)∞
(q−1w/z)∞

E−<(w)BI,>(z)

E−>(w)BI,<(z) =
(q9z/w)∞
(q7z/w)∞

BI,<(z)E
−
>(w)

BI,>(z)E
+
<(w) =

(q−3w/z)∞
(q−1w/z)∞

E+<(w)BI,>(z)

E+>(w)BI,<(z) =
(q5z/w)∞
(q7z/w)∞

BI,<(z)E
+
>(w)

BII,>(z)E
+
<(w) =

(q−1w/z)∞
(q−3w/z)∞

E+<(w)BII,>(z)
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E+>(w)BII,<(z) =
(q3z/w)∞
(qz/w)∞

BII,<(z)E
+
>(w)

BII,>(z)E
−
<(w) =

(q−1w/z)∞
(qw/z)∞

E−<(w)BII,>(z)

E−>(w)BII,<(z) =
(q3z/w)∞
(q5z/w)∞

BII,<(z)E
−
>(w)

FII,>(z)E
−
<(w) =

(
1− w

q2z

)
E−<(w)FII,>(z)

E−>(w)FII,<(z) =
(

1− q
2z

w

)
FII,<(z)E

−
>(w)

FII,>(z)E
+
<(w) =

1

1− q−4w/z
E+<(w)FII,>(z)

E+>(w)FII,<(z) =
1

1− z/wFII,<(z)E
−
>(w)

E−>(w1)E
+
<(w2) = 1

1− w2/w1
E+<(w2)E

−
>(w1)

E+>(w2)E
−
<(w1) = 1

1− w1/w2
E−<(w1)E

+
>(w2).

Appendix B. Fermion

For�NSR (z), we show the equations corresponding to the ones from (51) to (56)

φ̃R
′
(w)�RNS(q

−4) = �RNS(q−4)φ̃NS
′
(w) (58)

φ̃R
′
(w) = (q/w; q4)∞

(q3/w; q4)∞
φR(w) (59)

φ̃NS
′
(w) = (−1)1/2w−1/2 (qw; q4)∞

(q3w; q4)∞
φNS(w) (60)

〈R|φ̃R′n = 0(n < 0) 〈R|φ̃R′0 = 〈R| φ̃NS
′

n |NS〉 = 0 (n > 0)

〈R|φ̃R′(z)φ̃R′(w)�RNS(q−4)|NS〉 = 1− q/z
1− q2w/z

+ 1− q−1/z

1− q−2w/z
− 1

〈R|φRn φRm�RNS(q−4)|NS〉 = Xn,mγnγmqn+m(n,m > 0)

〈R|φRn �RNS(q−4)φNS−k−1/2|NS〉 = (−1)1/2X−k−1/2,nγnγkq
n+k (n, k > 0)

〈R|�RNS(q−4)φNS−k−1/2φ
NS
−l−1/2|NS〉 = Xl+1/2,k+1/2γlγkq

l+k (k, l > 0).

Appendix C. Calculation of equation (54)

We show details of calculation of (54). From (21)

〈NS|�NSR (q−4)φR(z)φR(w)|R〉

= 1

f+(z)f+(w)

{
1− qw

1− q2w/z
+ 1− q−1w

1− q−2w/z
− 1

}
=

∑
k>0,l>0

γk(qz)
kγl(qw)

l
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×
{∑
a>0

(
(1− qw)

(
q2w

z

)a
+ (1− w/q)

(
w

q2z

)a)
− 1

}
=

∑
06a6m

γn+aγm−aηaqn+mznwm −
∑

06a6m−1

γn+aγm−a−1(q
2a + q−2(a+1))

×qn+mznwm − γnγmznwm.
Hence the equation to be proved is

Xn,mγnγm =
∑

06a6m
γnγmηa −

∑
06a6m−1

γn+aγm−a−1(q
2a + q−2(a+1))− γnγmznwm

which is equivalent to

Xn,m = 1+ (1− t−1)(1+ t2n)
∑

16a6m

(t1+2n; t2)a−1

(t2+2n; t2)a−1

(t2m−2a+2; t2)a
(t2m−2a+1; t2)a

ta

1− t2(n+a) (61)

where we sett = q2. It can be proved by induction with respect tok that the summation
over a = m,m− 1, . . . , m− k yields

tm−k
(t1+2n; t2)m−k−1

(t2+2n; t2)m−k−1

(t2k+2; t2)m−k
(t2k+1; t2)m−k

∑k
j=0 t

2j

1− t2(n+k) .

Settingk = m− 1 we can see that the right-hand side of (61) is equal tot2m−t2n
1−t2(n+m) .
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