Free field realization of vertex operators for level two modules of ${ }^{U_{q}(\hat{s}(2))}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 318483
(http://iopscience.iop.org/0305-4470/31/42/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.104
The article was downloaded on 02/06/2010 at 07:17

Please note that terms and conditions apply.

Free field realization of vertex operators for level two modules of $U_{q}(\hat{\mathfrak{s} l}(\mathbf{2}))$

Yuji Hara \dagger
Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153, Japan

Received 16 July 1998

Abstract

Free field realization of vertex operators for level-two modules of $U_{q}(\hat{\mathfrak{s} l}(2))$ is shown through the free field realization of the modules given by M Idzumi (Int. J. Mod. Phys. A 9 4449 Preprint hep-th/9307129). We constructed type I and II vertex operators when the spin of the associated evaluation module is $\frac{1}{2}$ and type IIs for the spin 1.

1. Introduction

Vertex operators for the quantum affine algebra $U_{q}(\hat{\mathfrak{s} l}(2))$ have played essential roles in the algebraic analysis of solvable lattice models since the pioneering works of [1-3]. In these works, which analyse the $X X Z$ model, type I vertex operators are identified with halfinfinite transfer matrices as their representation-theoretical counterpart and type II vertex operators are interpreted as particle creation operators. To perform concrete computation such as a trace of composition of vertex operators, we need free field realization of modules and operators. In the said example of the $X X Z$ model, the integral expressions of n-point correlation functions which are special cases of the traces are obtained through bosonization of the level-one module of $U_{q}(\hat{\mathfrak{s} l}(2))$.

Motivated by these results, Idzumi $[4,5]$ constructed level-two modules and type I vertex operators accompanied by spin 1 evaluation modules for $U_{q}(\hat{\mathfrak{s}}(2))$ in terms of bosons and fermions and then calculated correlation functions of a spin 1 analogue of the $X X Z$ model. The purpose of this paper is to extend Idzumi's free field realization to other kinds of vertex operators i.e. type I and II vertex operators for the level-two modules associated with the evaluation module of spin $\frac{1}{2}$ and the type IIs for the spin 1 . The results are given in section 3 and their derivation is discussed in the first case in section 4. The results together with [4,5] give the complete set of vertex operators for the level-two module of $U_{q}(\hat{\mathfrak{s} l}(2))$ and enable one to calculate form factors of the spin 1 analogue of the $X X Z$ model.

Recently Jimbo and Shiraishi [7] showed a coset-type construction for the deformed Virasoro algebra with the vertex operators for $U_{q}(\hat{\mathfrak{s}}(2))$. They constructed a primary operator for the deformed Virasoro algebra as a coset-type composition of vertex operators which may be denoted as $\left(U_{q}(\hat{\mathfrak{s} l}(2))_{k} \oplus U_{q}(\hat{\mathfrak{s} l}(2))_{1}\right) / U_{q}(\hat{\mathfrak{l} l}(2))_{k+1}$. We hope that our results will be helpful for extending this work to the deformed supersymmetric Virasoro algebra through $\left(U_{q}(\hat{\mathfrak{s} l}(2))_{k} \oplus U_{q}(\hat{\mathfrak{s} l}(2))_{2}\right) / U_{q}(\hat{\mathfrak{s} l}(2))_{k+2}$.
\dagger E-mail address: ss77070@komaba.ecc.u-tokyo.ac.jp

2. Free field realization of the level-two module

2.1. Convention

In the following we will use U to denote the quantum affine algebra $U_{q}(\hat{\mathfrak{s l}}(2))$. Unless otherwise mentioned, we follow the notations of [4,5]. As for the free field representation, we slightly modify the convention.

The quantum affine algebra U is an associative algebra with unit 1 generated by $e_{i}, f_{i}(i=0,1), q^{h}\left(h \in P^{*}\right)$ with relations

$$
\begin{aligned}
& q^{0}=1 \quad q^{h} q^{h^{\prime}}=q^{h+h^{\prime}} \\
& q^{h} e_{i} q^{-h}=q^{\left\langle h, \alpha_{i}\right\rangle} e_{i} \quad q^{h} f_{i} q^{-h}=q^{-\left\langle h, \alpha_{i}\right\rangle} f_{i} \\
& {\left[e_{i}, f_{i}\right] \dagger=\delta_{i j} \frac{t_{i}-t_{i}^{-1}}{q-q^{-1}} \quad\left(t_{i}=q^{h_{i}}\right)} \\
& e_{i}^{3} e_{j}-[3] e_{i}^{2} e_{j} e_{i}+[3] e_{i} e_{j} e_{i}^{2}-e_{j} e_{i}^{3}=0 \\
& f_{i}^{3} f_{j}-[3] f_{i}^{2} f_{j} f_{i}+[3] f_{i} f_{j} f_{i}^{2}-f_{j} f_{i}^{3}=0
\end{aligned}
$$

where $P=\mathbb{Z} \Lambda_{0}+\mathbb{Z} \Lambda_{1}+\mathbb{Z} \delta$ is the weight lattice of the affine Lie algebra $\hat{\mathfrak{s l}}(2)$ and P^{*} is the dual lattice to P with the dual basis $\left\{h_{0}, h_{1}, d\right\}$ to $\left\{\Lambda_{0}, \Lambda_{1}, \delta\right\}$ with respect to the natural pairing $\langle\rangle:, P \times P^{*} \rightarrow \mathbb{Z}$. We also use current-type generators introduced by Drinfeld [11]

$$
\begin{aligned}
& {\left[a_{k} \cdot a_{l}\right]=\delta_{k+l, 0} \frac{[2 k]}{k} \frac{\gamma^{k}-\gamma^{-k}}{q-q^{-1}}} \\
& K a_{k} K^{-1}=a_{k} \quad K x_{k}^{ \pm} K^{-1}=q^{ \pm 2} x_{k}^{ \pm} \\
& {\left[a_{k}, x_{l}^{ \pm}\right]= \pm \frac{[2 k]}{k} \gamma^{\mp|k| / 2} x_{k+l}^{ \pm}} \\
& x_{k+l}^{ \pm} x_{l}^{ \pm}-q^{ \pm 2} x_{l}^{ \pm} x_{k+l}^{ \pm}=q^{ \pm 2} x_{k}^{ \pm} x_{l+1}^{ \pm}-x_{l+1}^{ \pm} x_{k}^{ \pm} \\
& {\left[x_{k}^{+}, x_{l}^{-}\right]=\frac{\gamma^{\frac{k-l}{2}} \psi_{k+l}-\gamma^{\frac{l-k}{2}} \phi_{k+l}}{q-q^{-1}}}
\end{aligned}
$$

where ψ_{k}, and φ_{k} are defined as

$$
\begin{aligned}
& \sum_{k \geqslant 0} \psi_{k} z^{-k}=K \exp \left\{\left(q-q^{-1}\right) \sum_{k \geqslant 1} a_{k} z^{-k}\right\} \\
& \sum_{k \geqslant 0} \phi_{k} z^{k}=K^{-1} \exp \left\{-\left(q-q^{-1}\right) \sum_{k \geqslant 1} a_{-k} z^{k}\right\} .
\end{aligned}
$$

The relations between the two types of generators are
$t_{1}=K \quad t_{0}=\gamma K^{-1} \quad e_{1}=x_{0}^{+}, e_{0} t_{1}=x_{1}^{-} \quad f_{1}=x_{0}^{-} \quad t_{1}^{-1} f_{1}=x_{0}^{-1}$.
The highest weight module and the evaluation module are described compactly in [4].
Commutation and anticommutation relations of bosons and fermions are given by

$$
\begin{aligned}
& {\left[a_{m}, a_{n}\right]=\delta_{m+n, 0} \frac{[2 m]^{2}}{m}} \\
& \left\{\phi_{m}, \phi_{n}\right\} \dagger \dagger=\delta_{m+n, 0} \eta_{m} \\
& \eta_{m}=q^{2 m}+q^{-2 m} .
\end{aligned}
$$

[^0]where $m, n \in \mathbb{Z}+\frac{1}{2}$ or $\in \mathbb{Z}$ for the Neveu-Schwarz sector or Ramond sector, respectively. Fock spaces and vacuum vectors are denoted as $\mathcal{F}^{a}, \mathcal{F}^{\phi^{N S}}, \mathcal{F}^{\phi^{R}}$ and $|\mathrm{vac}\rangle,|N S\rangle,|R\rangle$ for the boson and $N S$ and R fermion, respectively. Fermion currents are defined as
$$
\phi^{N S}(z)=\sum_{n \in \mathbb{Z}+\frac{1}{2}} \phi_{n}^{N S} z^{-n} \quad \phi^{R}(z)=\sum_{n \in \mathbb{Z}} \phi_{n}^{R} z^{-n} .
$$
$Q=\mathbb{Z} \alpha$ is the root lattice of $\mathfrak{s l}_{2}$ and $F[Q]$ is the group algebra. We use ∂ as
$$
[\partial, \alpha]=2
$$
2.2. $V\left(2 \Lambda_{0}\right), V\left(2 \Lambda_{1}\right)$

The highest weight module $V\left(2 \Lambda_{0}\right)$ is identified with the Fock space

$$
\begin{equation*}
\mathcal{F}_{+}^{(0)}=\mathcal{F}^{a} \otimes\left\{\left(\mathcal{F}_{\text {even }}^{\phi^{N S}} \otimes F[2 Q]\right) \oplus\left(\mathcal{F}_{\text {odd }}^{\phi^{N S}} \otimes \mathrm{e}^{\alpha} F[2 Q]\right)\right\} \tag{1}
\end{equation*}
$$

subscripts even and odd represent the number of fermions. The highest weight vector is $|\mathrm{vac}\rangle \otimes|N S\rangle \otimes 1 . V\left(2 \Lambda_{1}\right)$ is

$$
\begin{equation*}
\mathcal{F}_{-}^{(0)}=\mathcal{F}^{a} \otimes\left\{\left(\mathcal{F}_{\text {even }}^{\phi^{N S}} \otimes \mathrm{e}^{\alpha} F[2 Q]\right) \oplus\left(\mathcal{F}_{\text {odd }}^{\phi^{N S}} \otimes F[2 Q]\right)\right\} \tag{2}
\end{equation*}
$$

with the highest weight vector being $|\mathrm{vac}\rangle \otimes|N S\rangle \otimes \mathrm{e}^{\alpha}$. Note that

$$
\begin{aligned}
& \mathcal{F}^{(0)}=\mathcal{F}_{-}^{(0)} \oplus \mathcal{F}_{+}^{(0)} \\
& \mathcal{F}^{(0)}=\mathcal{F}^{a} \otimes \mathcal{F}^{\phi^{N S}} \otimes F[Q] .
\end{aligned}
$$

The operators are realized in the following manner:

$$
\begin{aligned}
& \gamma=q^{2} \quad K=q^{\partial} \\
& x^{ \pm}(z)=\sum_{m \in \mathbb{Z}} x_{m}^{ \pm} z^{-m}=E_{<}^{ \pm}(z) E_{>}^{ \pm}(z) \phi^{N S}(z) \mathrm{e}^{ \pm \alpha} z^{\frac{1}{2} \pm \frac{1}{2} \partial} \\
& E_{<}^{ \pm}(z)=\exp \left(\pm \sum_{m>0} \frac{a_{-m}}{[2 m]} q^{\mp m} z^{m}\right) \quad E_{>}^{ \pm}(z)=\exp \left(\mp \sum_{m>0} \frac{a_{m}}{[2 m]} q^{\mp m} z^{-m}\right)
\end{aligned}
$$

and

$$
\begin{align*}
& d=-\frac{\partial^{2}}{8}+\frac{(\lambda, \lambda)}{4}-\sum_{m=1}^{\infty} m N_{m}^{a}-\sum_{k>0} k N_{k}^{\phi^{N S}} \tag{3}\\
& N_{m}^{a}=\frac{m}{[2 m]^{2}} a_{-m} a_{m} \quad N_{k}^{\phi^{N S}}=\frac{1}{\eta_{m}} \phi_{-m}^{N S} \phi_{m}^{N S} \quad(m>0) \tag{4}
\end{align*}
$$

where the highest weight vector of the module should be substituted for λ of (3).
2.3. $V\left(\Lambda_{0}+\Lambda_{1}\right)$

The module $V\left(\Lambda_{0}+\Lambda_{1}\right)$ is identified with

$$
\begin{equation*}
\mathcal{F}^{(1)}=\mathcal{F}^{a} \otimes \mathcal{F}^{\phi^{R}} \otimes \mathrm{e}^{\frac{\alpha}{2}} F[Q] \tag{5}
\end{equation*}
$$

where

$$
\phi_{0}^{R}|R\rangle=|R\rangle .
$$

The highest weight vector is identified with \mid vac $\rangle \otimes|R\rangle \otimes \mathrm{e}^{\frac{\alpha}{2}}$.
Operators are constructed in the same way as before except that subscripts for fermion sector are R instead of $N S$.

3. Free field realizations of vertex operators

Let V, V^{\prime} be level-two modules and $V_{z}^{(k)}$ be a spin $k / 2$ evaluation module of U. Vertex operators we will consider are U-linear maps of the following kinds [8, 9]

$$
\begin{align*}
& \Phi_{V}^{V^{\prime}, k}(z): V \longrightarrow V^{\prime} \otimes V_{z}^{(k)} \tag{6}\\
& \Psi_{V}^{k, V^{\prime}}(z): V \longrightarrow V_{z}^{(k)} \otimes V^{\prime} . \tag{7}
\end{align*}
$$

Vertex operators of the form (6), (7) are called type I and II, respectively. Components of vertex operators are defined as

$$
\Phi(z)_{V}^{V^{\prime}, k}=\sum_{n=0}^{k} \Phi_{n}(z) \otimes u_{n} \quad \Psi(z)_{V}^{k, V^{\prime}}=\sum_{n=0}^{k} u_{n} \otimes \Psi_{n}(z)
$$

3.1. Type I vertex operators for level two and spin $\frac{1}{2}$

We show free field realization of type I vertex operators of the following kinds

$$
\begin{align*}
& \Phi_{2 \Lambda_{i}}^{\Lambda_{0}+\Lambda_{1}, 1}(z): V\left(2 \Lambda_{i}\right) \longrightarrow V\left(\Lambda_{0}+\Lambda_{1}\right) \otimes V_{z}^{(1)} \tag{8}\\
& \Phi_{\Lambda_{0}+\Lambda_{1}}^{2 \Lambda_{i}, 1}(z): V\left(\Lambda_{0}+\Lambda_{1}\right) \longrightarrow V\left(2 \Lambda_{i}\right) \otimes V_{z}^{(1)} \tag{9}
\end{align*}
$$

where $i=0$ or 1 .
Under the free field realization of level-two modules reviewed in secton 2, the explicit forms of the components of the vertex operators in (8) are
$\Phi_{1}(z)=B_{I,<}(z) B_{I,>}(z) \Omega_{N S}^{R}(z) \mathrm{e}^{\alpha / 2}\left(-q^{4} z\right)^{\partial / 4}$
$\Phi_{0}(z)=\oint \frac{\mathrm{d} w}{2 \pi \mathrm{i}} B_{I,<}(z) E_{<}^{-}(w) B_{I,>}(z) E_{>}^{-}(w) \Omega_{N S}^{R}(z) \phi^{N S}(w) \mathrm{e}^{-\alpha / 2}\left(-q^{4} z\right)^{\partial / 4}$

$$
\begin{equation*}
\times w^{-\partial / 2}\left(-q^{4} z w^{3}\right)^{-\frac{1}{2}} \frac{\left(\frac{w}{q^{3} z} ; q^{4}\right)_{\infty}}{\left(\frac{w}{q z} ; q^{4}\right)_{\infty}}\left\{\frac{w}{1-q^{-3} w / z}+\frac{q^{5} z}{1-q^{5} z / w}\right\} \tag{11}
\end{equation*}
$$

$B_{I,<}(z)=\exp \left(\sum_{n=1}^{\infty} \frac{[n] a_{-n}}{[2 n]^{2}}\left(q^{5} z\right)^{n}\right)$
$B_{I,>}(z)=\exp \left(-\sum_{n=1}^{\infty} \frac{[n] a_{n}}{[2 n]^{2}}\left(q^{3} z\right)^{-n}\right)$.
The integrand of $\Phi_{0}(z)$ has poles only at $w=q^{5} z, q^{3} z$ except for $w=0, \infty$ and the contour of integration encloses $w=0, q^{5} z$, details are discussed in section 4. For those of (9) we just replace $\Omega_{N S}^{R}(z)$ with $\Omega_{R}^{N S}(z)$ in (10), (11).

The fermionic part $\Omega(z)$'s are maps between different fermion sectors and satisfy

$$
\begin{equation*}
\phi^{N S}(w) \Omega(z)_{R}^{N S}=\left(\frac{-q^{4} z}{w}\right)^{1 / 2} \frac{\left(\frac{w}{q^{3} z} ; q^{4}\right)_{\infty}\left(\frac{q^{7} z}{w} ; q^{4}\right)_{\infty}}{\left(\frac{w}{q z} ; q^{4}\right)_{\infty}\left(\frac{q^{5} z}{w} ; q^{4}\right)_{\infty}} \Omega(z)_{R}^{N S} \phi^{R}(w) \tag{14}
\end{equation*}
$$

and exactly the same equation except subscripts for fermion sectors are exchanged. This kind of mapping for fermions first appeared in high-energy physics theory as 'fermion emission vertex operator' $[6,10]$. Their free field realizations are
$\Omega_{N S}^{R}(z)=\langle N S| \mathrm{e}^{Y}|R\rangle$

$$
\begin{align*}
& Y=-\sum_{m>n \geqslant 0} X_{m, n} \varphi_{-m}^{R} \varphi_{-n}^{R} z^{m+n}-\sum_{k>l \geqslant 0} X_{k+1 / 2, l+1 / 2} \varphi_{k+1 / 2}^{N S} \varphi_{l+1 / 2}^{N S} z^{-k-l-1} \\
& \quad+\sum_{\substack{m \geqslant 0 \\
k \geqslant 0}} X_{m,-k-1 / 2} \varphi_{-m}^{R} \varphi_{k+1 / 2}^{N S} z^{m-k-1 / 2} \tag{16}\\
& \Omega_{R}^{N S}(z)=\langle R| \mathrm{e}^{Y^{\prime}}|N S\rangle \tag{17}\\
& Y^{\prime}=\sum_{k>l \geqslant 0} X_{k+1 / 2, l+1 / 2} \varphi_{-k-1 / 2}^{N S} \varphi_{-l-1 / 2}^{N S} z^{k+l+1}+\sum_{m>n \geqslant 0} X_{m, n} \varphi_{m}^{R} \varphi_{n}^{R} z^{-m-n} \\
& \quad-\sum_{\substack{k \geqslant 0 \\
m \geqslant 0}} X_{-k-1 / 2, m} \varphi_{-k-1 / 2}^{N S} \varphi_{m}^{R} z^{k-m+1 / 2} \tag{18}\\
& \varphi_{0}^{R}=\phi_{0}^{R} \tag{19}\\
& \varphi_{k+1 / 2}^{N S}=\phi_{k+1 / 2}^{N S} \frac{\gamma_{k} q^{-3 k-2}}{\eta_{k+1 / 2}}\left(-\phi_{-m}^{R} \frac{\gamma_{m} q^{5 m}}{\eta_{m}}\right. \\
& X_{k, l}=\frac{q^{4 k}-q^{4 l}}{1-q^{4(k+l)}} \varphi_{m}^{R}=\phi_{m}^{R} \frac{\gamma_{m} q^{-3 m}}{\eta_{m}} \tag{20}\\
& \gamma_{n}= \tag{21}
\end{align*}
$$

(15), (17) are to mean that a matrix element is given by

$$
\begin{aligned}
& \left.\left.{ }_{R}\langle\text { out }| \Omega_{N S}^{R}(z) \mid \text { in }\right\rangle_{N S}={ }_{R}\langle\text { out }| \otimes\langle N S| \mathrm{e}^{Y}|R\rangle \otimes \mid \text { in }\right\rangle_{N S} \\
& \text { for } \left.\mid \text { out }\rangle_{R} \in \mathcal{F}^{\phi^{R}}, \mid \text { in }\right\rangle_{N S} \in \mathcal{F}^{\phi^{N S}}
\end{aligned}
$$

We define the normalized vertex operators $\tilde{\Phi}(z)$'s as follows

$$
\begin{aligned}
\left\langle\Lambda_{0}+\Lambda_{1}\right| \tilde{\Phi}_{1}(z)\left|2 \Lambda_{0}\right\rangle & =1 & & \left\langle 2 \Lambda_{1}\right| \tilde{\Phi}_{1}(z)\left|\Lambda_{0}+\Lambda_{1}\right\rangle
\end{aligned}=1
$$

and these are given by

$$
\begin{align*}
& \tilde{\Phi}_{2 \Lambda_{0}}^{\Lambda_{0}+\Lambda_{1}, 1}(z)=\Phi(z) \tag{22}\\
& \tilde{\Phi}_{\Lambda_{0}+\Lambda_{1}}^{\Lambda_{1}, 1}(z)=\left(-q^{4} z\right)^{-1 / 4} \Phi(z) \tag{23}\\
& \tilde{\Phi}_{\Lambda_{0}+\Lambda_{1}}^{2 \Lambda_{0}, 1}(z)=\left(-q^{4} z\right)^{1 / 4} \Phi(z) \tag{24}\\
& \tilde{\Phi}_{2 \Lambda_{1}}^{\Lambda_{0}+\Lambda_{1}, 1}(z)=\left(-q^{6} z\right)^{-1 / 2} \Phi(z) \tag{25}
\end{align*}
$$

3.2. Type II vertex operators for level two and spin $\frac{1}{2}$

We consider type II vertex operators of the following kind

$$
\begin{align*}
& \Psi_{2 \Lambda_{i}}^{1, \Lambda_{0}+\Lambda_{1}}(z): V\left(2 \Lambda_{i}\right) \longrightarrow V_{z}^{(1)} \otimes V\left(\Lambda_{0}+\Lambda_{1}\right) \tag{26}\\
& \Psi_{\Lambda_{0}+\Lambda_{1}}^{1,2 \Lambda_{i}}(z): V\left(\Lambda_{0}+\Lambda_{1}\right) \longrightarrow V_{z}^{(1)} \otimes V\left(2 \Lambda_{i}\right) \tag{27}
\end{align*}
$$

Explicit forms of the components are as follows.
$\Psi_{0}(z)=B_{I I,<}(z) B_{I I,>}(z) \Omega\left(q^{-2} z\right) \mathrm{e}^{-\alpha / 2}\left(-q^{2} z\right)^{-\partial / 4}$

$$
\begin{align*}
& \begin{array}{l}
\Psi_{1}(z)=\oint \frac{\mathrm{d} w}{2 \pi \mathrm{i}} B_{I I,<}(z) E_{<}^{+}(w) B_{I I,>}(z) E_{>}^{+}(w) \Omega\left(q^{-2} z\right) \phi(w) \mathrm{e}^{\alpha / 2}\left(-q^{2} z\right)^{-\partial / 4} \\
\qquad \quad \times w^{\partial / 2}\left(-q^{2} z w^{3}\right)^{-\frac{1}{2}} \frac{\left(\frac{w}{q z} ; q^{4}\right)_{\infty}}{\left.\frac{q w}{z} ; q^{4}\right)_{\infty}}\left\{\frac{w}{1-q^{-3} w / z}+\frac{q^{3} z}{1-q z / w}\right\} \\
B_{I I,<}(z)=\exp \left(-\sum_{n=1}^{\infty} \frac{[n] a_{-n}}{[2 n]^{2}}(q z)^{n}\right) \\
B_{I I,>}(z)=\exp \left(\sum_{n=1}^{\infty} \frac{[n] a_{n}}{[2 n]^{2}}\left(q^{3} z\right)^{-n}\right) .
\end{array} .
\end{align*}
$$

The integrand of $\Psi_{1}(z)$ has poles only at $w=q^{3} z, q z$ except for $w=0, \infty$ and the contour of integration encloses $w=0, q z$. Subscripts for fermion sectors are abbreviated.

Normalized vertex operators are defined by the conditions

$$
\begin{aligned}
\left\langle\Lambda_{0}+\Lambda_{1}\right| \tilde{\Psi}_{1}(z)\left|2 \Lambda_{0}\right\rangle & =1 & & \left\langle 2 \Lambda_{1}\right| \tilde{\Psi}_{1}(z)\left|\Lambda_{0}+\Lambda_{1}\right\rangle
\end{aligned}=1
$$

and these are given by

$$
\begin{align*}
& \tilde{\Psi}_{2 \Lambda_{0}}^{1, \Lambda_{0}+\Lambda_{1}}(z)=(-q)^{-1} \Psi(z) \tag{32}\\
& \tilde{\Psi}_{\Lambda_{0}+\Lambda_{1}}^{1,2 \Lambda_{1}}(z)=-\left(-q^{6} z\right)^{-1 / 4} \Psi(z) \tag{33}\\
& \tilde{\Psi}_{\Lambda_{0}+\Lambda_{1}}^{1,2 \Lambda_{0}}(z)=\left(-q^{2} z\right)^{1 / 4} \Psi(z) \tag{34}\\
& \tilde{\Psi}_{2 \Lambda_{1}}^{1, \Lambda_{0}+\Lambda_{1}}(z)=\left(-q^{2} z\right)^{1 / 2} \Psi(z) \tag{35}
\end{align*}
$$

3.3. Type II vertex operators for level two and spin 1

When the spin of the evaluation module is 1 , the type II vertex operators do not contain any fermion emission vertex operators:

$$
\begin{align*}
& \Psi_{2 \Lambda_{i}}^{2,2 \Lambda_{i}}(z): V\left(2 \Lambda_{i}\right) \longrightarrow V_{z}^{(2)} \otimes V\left(2 \Lambda_{i}\right) \tag{36}\\
& \Psi_{\Lambda_{0}+\Lambda_{1}}^{2, \Lambda_{0}+\Lambda_{1}}(z): V\left(\Lambda_{0}+\Lambda_{1}\right) \longrightarrow V_{z}^{(2)} \otimes V\left(\Lambda_{0}+\Lambda_{1}\right) \tag{37}
\end{align*}
$$

Explicit form of the components is as follows

$$
\begin{align*}
& \Psi_{0}(z)= F_{I I,<}(z) F_{I I,>}(z) \mathrm{e}^{-\alpha}\left(-q^{2} z\right)^{-\partial / 2+1} \tag{38}\\
& \Psi_{1}(z)=\oint \frac{\mathrm{d} w}{2 \pi \mathrm{i}} F_{I I,<}(z) E_{<}^{+}(w) F_{I I,>}(z) E_{>}^{+}(w) \phi(w) \\
& \quad \times\left(\frac{w}{-q^{2} z}\right)^{\partial / 2} w^{-1 / 2}\left\{\frac{1}{1-\frac{w}{q^{4} z}}+\frac{q^{4} z}{w\left(1-\frac{z}{w}\right)}\right\} \tag{39}
\end{align*}
$$

The integration contour encircles poles $w=0, z$ but the pole $w=q^{4} z$ lies outside of it.

$$
\begin{aligned}
& \Psi_{2}(z)=\oint \frac{\mathrm{d} w_{2}}{2 \pi \mathrm{i}} \oint \frac{\mathrm{~d} w_{1}}{2 \pi \mathrm{i}} F_{I I,<}(z) E_{<}^{+}\left(w_{1}\right) E_{<}^{+}\left(w_{2}\right) F_{I I,>}(z) E_{>}^{+}\left(w_{1}\right) E_{>}^{+}\left(w_{2}\right) \\
& \times \mathrm{e}^{\alpha}\left(\frac{w_{1} w_{2}}{-q^{2} z}\right)^{\partial / 2}\left(w_{1} w_{2}\right)^{-1 / 2}\left\{\frac{1}{1-\frac{w_{1}}{q^{4} z}}+\frac{q^{4} z}{w_{1}\left(1-\frac{z}{w_{1}}\right)}\right\} \\
& \times\left\{[2]^{-1}: \phi\left(w_{1}\right) \phi\left(w_{2}\right):\left(\frac{w_{1}-q^{-2} w_{2}}{-q^{2} z\left(1-\frac{w_{2}}{q^{4} w_{1}}\right)}+\frac{1-\frac{w_{1}}{q^{2} w_{2}}}{1-\frac{z}{w_{2}}}\right)\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.+\frac{\left(w_{1} w_{2}\right)^{1 / 2}\left(1-\frac{w_{2}}{w_{1}}\right)}{-q^{2} z\left(1-\frac{q^{2} w_{2}}{w_{1}}\right)\left(1-\frac{w_{2}}{q^{4} z}\right)}-\frac{\left(\frac{w_{1}}{w_{2}}\right)^{1 / 2}\left(1-\frac{w_{1}}{w_{2}}\right)}{\left(1-\frac{q^{2} w_{1}}{w_{2}}\right)\left(1-\frac{z}{w_{2}}\right)}\right\} \tag{40}
\end{equation*}
$$

We have to prepare two contours because of the fermionic part and one is for the term including : $\phi\left(w_{1}\right) \phi\left(w_{2}\right)$: and the other is for the rest. The former satisfies $\left|\frac{w_{2}}{q^{4} w_{1}}\right|<$ $1,\left|w_{2}\right|>|z|$ and the same condition satisfied by the contour for Ψ_{1} with substitution $w=w_{1}$. The latter satisfies $\left|q^{2} w_{2}\right|<\left|w_{1}\right|<\left|q^{-2} w_{2}\right|$ and the same conditions as Ψ_{1} with $w=w_{1}, w_{2}$

$$
\begin{align*}
& F_{I I,<}(z)=\exp \left(-\sum_{m>0} \frac{a_{-m}}{[2 m]}(q z)^{m}\right) \tag{41}\\
& F_{I I,>}(z)=\exp \left(\sum_{m>0} \frac{a_{m}}{[2 m]}\left(q^{3} z\right)^{-m}\right) \tag{42}
\end{align*}
$$

Under the normalization

$$
\begin{aligned}
& \left\langle 2 \Lambda_{0}\right| \tilde{\Psi}_{0}(z)\left|2 \Lambda_{1}\right\rangle=1 \quad\left\langle 2 \Lambda_{1}\right| \tilde{\Psi}_{2}(z)\left|2 \Lambda_{0}\right\rangle=1 \\
& \left\langle\Lambda_{0}+\Lambda_{1}\right| \tilde{\Psi}_{1}(z)\left|\Lambda_{0}+\Lambda_{1}\right\rangle=1
\end{aligned}
$$

$\tilde{\Psi}(z)$'s are given by

$$
\begin{align*}
& \tilde{\Psi}_{2 \Lambda_{1}}^{2,2 \Lambda_{0}}(z)=\Psi(z) \tag{43}\\
& \tilde{\Psi}_{\Lambda_{0}+\Lambda_{1}}^{2, \Lambda_{1}+\Lambda_{1}}(z)=-\left(-q^{2} z\right)^{-1 / 2} \Psi(z) \tag{44}\\
& \tilde{\Psi}_{2 \Lambda_{0}}^{2,2 \Lambda_{1}}(z)=\left(-q^{4} z\right)^{-1} \Psi(z) \tag{45}
\end{align*}
$$

4. Derivation

Taking $\Phi_{2 \Lambda_{i}}^{\Lambda_{0}+\Lambda_{1}, 1}(z)$ as an example, we discuss the derivation of the results in the previous section. Other cases can be treated in almost the same way.

4.1. General structure of $\Phi_{0}(z)$ and $\Phi_{1}(z)$

Calculating

$$
\Delta(x) \Phi(z)=\Phi(z) x
$$

for $x=$ Chevalley generators of U and a_{n}, we get

$$
\begin{align*}
& 0=\left[\Phi_{1}(z), x_{0}^{+}\right] \\
& K \Phi_{1}(z)=\left[\Phi_{0}(z), x_{0}^{+}\right] \\
& 0=x_{0}^{-} \Phi_{0}(z)-q \Phi_{0}(z) x_{0}^{-} \\
& \Phi_{0}(z)=\Phi_{1}(z) x_{0}^{-}-q x_{0}^{-} \Phi_{1}(z) \tag{46}\\
& 0=\Phi_{0}(z) x_{1}^{-}-q x_{1}^{-} \Phi_{0}(z) \\
& q^{3} z \Phi_{0}(z)=\Phi_{1}(z) x_{1}^{-}-q^{-1} x_{1}^{-} \Phi_{1}(z) \tag{47}\\
& (q z K)^{-1} \Phi_{1}(z)=\left[\Phi_{0}(z), x_{-1}^{+}\right] \\
& 0=\left[\Phi_{1}(z), x_{-1}^{+}\right] \\
& K \Phi_{1}(z) K^{-1}=q \Phi_{1}(z) \tag{48}\\
& K \Phi_{0}(z) K^{-1}=q^{-1} \Phi_{0}(z)
\end{align*}
$$

$$
\begin{align*}
& {\left[a_{m}, \Phi_{1}(z)\right]=\left(q^{5} z\right)^{m} \frac{[m]}{m} \Phi_{1}(z)} \tag{49}\\
& {\left[a_{-m}, \Phi_{1}(z)\right]=\left(q^{3} z\right)^{-m} \frac{[m]}{m} \Phi_{1}(z) .} \tag{50}
\end{align*}
$$

From (48)-(50), we can speculate the form of $\Phi_{1}(z)$ as

$$
\Phi_{1}(z)=B_{I,<}(z) B_{I,>}(z) \Omega_{N S}^{R}(z) \mathrm{e}^{\alpha / 2} y^{\partial} .
$$

To determine y and the fermionic part $\Omega_{N S}^{R}(z)$, we impose the following conditions on $\Phi_{1}(z)$

$$
\begin{aligned}
& \Phi_{1}(z) x_{0}^{-}-q x_{0}^{-} \Phi_{1}(z)=\left(q^{3} z\right)^{-1}\left(\Phi_{1}(z) x_{1}^{-}-q^{-1} x_{1}^{-} \Phi_{1}(z)\right) \\
& 0=\left[\Phi_{1}(z), x^{+}(w)\right]
\end{aligned}
$$

which can be easily seen from (46), (47) and the proposition of section 4.4 of [12]. Then we have (10), (14)

$$
\begin{aligned}
& \Phi_{1}(z)=B_{I,<}(z) B_{I,>}(z) \Omega_{N S}^{R}(z) \mathrm{e}^{\alpha / 2}\left(-q^{4} z\right)^{\partial / 4} \\
& \phi^{R}(w) \Omega_{N S}^{R}(z)=\left(\frac{-q^{4} z}{w}\right)^{1 / 2} \frac{\left(\frac{w}{q^{3} z} ; q^{4}\right)_{\infty}\left(\frac{q^{7} z}{w} ; q^{4}\right)_{\infty}}{\left(\frac{w}{q z} ; q^{4}\right)_{\infty}\left(\frac{q^{5} z}{w} ; q^{4}\right)_{\infty}^{R}} \Omega_{N S}^{R}(z) \phi^{N S}(w)
\end{aligned}
$$

$\Phi_{1}(z)$ can be calculated through (46)

$$
\begin{aligned}
\Phi_{0}(z)=\oint & \frac{\mathrm{d} w}{2 \pi \mathrm{i}} \frac{1}{w}\left\{\Phi_{1}(z) x^{-}(w)-q x^{-}(w) \Phi_{1}(z)\right\} \\
= & \oint \frac{\mathrm{d} w}{2 \pi \mathrm{i}} B_{I,<}(z) E_{<}^{-}(w) B_{I,>}(z) E_{>}^{-}(w) \Omega_{N S}^{R}(z) \phi^{N S}(w) \mathrm{e}^{-\alpha / 2}\left(-q^{4} z\right)^{\partial / 4} \\
& \times w^{-\partial / 2}\left(-q^{4} z w^{3}\right)^{-\frac{1}{2}} \frac{\left(\frac{w}{q^{3} z} ; q^{4}\right)_{\infty}}{\left(\frac{w}{q z} ; q^{4}\right)_{\infty}}\left\{\frac{w}{1-q^{-3} w / z}+\frac{q^{5} z}{1-q^{5} z / w}\right\} .
\end{aligned}
$$

To determine the contour of integration we have to find the poles of $\Omega_{N S}^{R}(z) \phi^{N S}(w)$ and this can be seen from

$$
\begin{aligned}
& \langle R| \Omega_{N S}^{R}(z) \phi^{N S}(w)|N S\rangle=\frac{\left(\frac{w}{q z} ; q^{4}\right)_{\infty}}{\left(\frac{w}{q^{3} z} ; q^{4}\right)_{\infty}} \\
& \langle N S| \Omega_{R}^{N S}(z) \phi^{R}(w)|R\rangle=\left(\frac{w}{-q^{4} z}\right)^{1 / 2} \frac{\left(\frac{w}{q z} ; q^{4}\right)_{\infty}}{\left(\frac{w}{q^{3} z} ; q^{4}\right)_{\infty}}
\end{aligned}
$$

Hence as a composite $\Omega_{N S}^{R}(z) \phi^{N S}(w) \frac{\left(\frac{w}{q^{3}} ; q^{4}\right)_{\infty}}{\left(\frac{w}{q^{z}} ; q^{4}\right)_{\infty}}$ in the integrand has no poles and the contour is the one encloses $w=0, q^{5} z$.

4.2. Fermion emission vertex operator

In [6], equation (15) appears in the study of the Ising model and its free field realization is given without any details. Thus we give the exposition of its derivation \dagger. The main point of
derivating free field realization of the fermion emission vertex operator $\Omega_{N S}^{R}(z)$ (15), (16) is to expand $\Omega_{N S}^{R}(z)$ as

$$
\begin{aligned}
& \Omega_{N S}^{R}(z)=\sum_{K, L} a_{K, L} \phi_{k_{1}}^{R} \phi_{k_{2}}^{R} \ldots|R\rangle\langle N S| \phi_{l_{1}}^{N S} \phi_{l_{2}}^{N S} \ldots \\
& K=\left\{k_{i}\right\} \quad L=\left\{l_{i}\right\}
\end{aligned}
$$

and to calculate the coefficients $a_{K, L}$. After normalizing ϕ_{n} suitably to φ_{n} (19), (20), we see ' $a_{K, L} /\left(\right.$ normalization factor)' are identified with Pfaffians of $X_{k, l}$. With the aid of a relation satisfied by Pfaffian

$$
\omega^{\wedge n}=n!\operatorname{Pf}\left(b_{i j}\right) x_{1} \wedge x_{2} \ldots \wedge x_{2 n}
$$

where $x_{k}(1 \leqslant k \leqslant 2 n)$ is a Grassmann variable and

$$
\omega=\sum_{1 \leqslant i<j \leqslant 2 n} b_{i j} x_{i} \wedge x_{j}
$$

we get (15), (16).
Wick's theorem can be generalized to the present situation and we only need to calculate one- and two-point correlation functions for $a_{K, L}$. To calculate these, we rewrite (14) and introduce auxiliary operators

$$
\begin{align*}
& \tilde{\phi}^{N S}(w) \Omega_{R}^{N S}\left(q^{-4}\right)=\Omega_{R}^{N S}\left(q^{-4}\right) \tilde{\phi}^{R}(w) \tag{51}\\
& \tilde{\phi}^{N S}(w)=(-1)^{-1 / 2} w^{1 / 2} \frac{\left(q w^{-1} ; q^{4}\right)_{\infty}}{\left(q^{3} w^{-1} ; q^{4}\right)_{\infty}} \phi^{N S}(w) \tag{52}\\
& \tilde{\phi}^{R}(w)=\frac{\left(q w ; q^{4}\right)_{\infty}}{\left(q^{3} w ; q^{4}\right)_{\infty}} \phi^{R}(w)=f_{+}(w) \phi^{R}(w) \tag{53}
\end{align*}
$$

We set $\Omega\left(z=q^{4}\right)$ for simplicity. They are defined to satisfy

$$
\langle N S| \tilde{\phi}_{n}^{N S}=0(n<0) \quad \tilde{\phi}_{n}^{R}|R\rangle=0(n>0) \quad \tilde{\phi}_{0}^{R}|R\rangle=|R\rangle
$$

and this enables us to see that

$$
\langle N S| \Omega_{R}^{N S}\left(q^{-4}\right) \tilde{\phi}^{R}(z) \tilde{\phi}^{R}(w)|N S\rangle=\langle N S| \tilde{\phi}^{N S}(z) \Omega_{R}^{N S}\left(q^{-4}\right) \tilde{\phi}^{R}(w)|N S\rangle
$$

contains only negative (positive) powers of $z(w)$. On the other hand the expectation value of

$$
\begin{aligned}
& \left\{\tilde{\phi}^{R}(z), \tilde{\phi}^{R}(w)\right\}=f_{+}(z) f_{+}(w)\left(\delta\left(\frac{q^{2} w}{z}\right)+\delta\left(\frac{w}{q^{2} z}\right)\right) \\
& \delta(z)=\sum_{n \in \mathbb{Z}} z^{n}
\end{aligned}
$$

with respect to $\langle N S| \Omega_{R}^{N S}\left(q^{-4}\right)$ and $|R\rangle$ is

$$
\begin{gathered}
\langle N S| \Omega_{R}^{N S}\left(q^{-4}\right) \tilde{\phi}^{R}(z) \tilde{\phi}^{R}(w)|N S\rangle+\langle N S| \Omega_{R}^{N S}\left(q^{-4}\right) \tilde{\phi}^{R}(w) \tilde{\phi}^{R}(z)|N S\rangle \\
=f_{+}(z) f_{+}(w)\left(\delta\left(\frac{q^{2} w}{z}\right)+\delta\left(\frac{w}{q^{2} z}\right)\right)
\end{gathered}
$$

where we normalize $\langle N S| \Omega_{R}^{N S}\left(q^{-4}\right)|R\rangle=1$. We then get

$$
\langle N S| \Omega_{R}^{N S}\left(q^{-4}\right) \tilde{\phi}^{R}(z) \tilde{\phi}^{R}(w)|R\rangle=\frac{1-q w}{1-q^{2} w / z}+\frac{1-q^{-1} w}{1-q^{-2} w / z}-1
$$

Expanding the last line of the following equation as in appendix C

$$
\begin{gathered}
\langle N S| \Omega_{R}^{N S}\left(q^{-4}\right) \phi^{R}(z) \phi^{R}(w)|R\rangle=\sum_{n, m \in \mathbb{Z}}\langle N S| \Omega_{R}^{N S}\left(q^{-4}\right) \phi_{n}^{R} \phi_{m}^{R}|R\rangle z^{-n} w^{-m} \\
=\frac{1}{f_{+}(z) f_{+}(w)}\left\{\frac{1-q w}{1-q^{2} w / z}+\frac{1-q^{-1} w}{1-q^{-2} w / z}-1\right\}
\end{gathered}
$$

we have

$$
\begin{equation*}
\langle N S| \Omega_{R}^{N S}\left(q^{-4}\right) \phi_{-n}^{R} \phi_{-m}^{R}|R\rangle=X_{m, n} \gamma_{n} \gamma_{m} q^{n+m} \quad(n, m \geqslant 0) . \tag{54}
\end{equation*}
$$

Similar calculation yields

$$
\begin{align*}
& \langle N S| \phi_{k+1 / 2}^{N S} \Omega_{R}^{N S}\left(q^{-4}\right) \phi_{-n}^{R}|R\rangle=-(-1)^{1 / 2} X_{-k-1 / 2, n} \gamma_{n} \gamma_{k} q^{n+k} \quad(n, k \geqslant 0) \tag{55}\\
& \langle N S| \phi_{k+1 / 2}^{N S} \phi_{l+1 / 2}^{N S} \Omega_{R}^{N S}\left(q^{-4}\right)|R\rangle=-X_{l+1 / 2, k+1 / 2} \gamma_{l} \gamma_{k} q^{l+k} \quad(k, l \geqslant 0) . \tag{56}
\end{align*}
$$

z-dependence of $\Omega_{N S}^{R}(z)$ is recovered with the equation

$$
\begin{align*}
& \zeta^{d^{R}} \Omega_{N S}^{R}(z) \zeta^{-d^{N S}}=\Omega_{N S}^{R}\left(\zeta^{-1} z\right) \\
& \zeta^{-d^{i}} \phi^{i}(z) \zeta^{d^{i}}=\phi^{i}(\zeta z) \tag{57}\\
& \langle i| d^{i}=d^{i}|i\rangle=0
\end{align*}
$$

where d^{i},s are the fermionic part of d of (3)

$$
d^{i}=-\sum_{k>0} k N_{k}^{\phi^{i}} \quad(i=N S \text { or } R)
$$

and satisfy

$$
\left[d^{i}, \phi_{n}^{i}\right]=n \phi_{n} .
$$

To derive (57), we multiply (14) by $\zeta^{d^{R}}, \zeta^{-d^{N S}}$ from left and right respectively.

Acknowledgments

The author thanks M Jimbo, H Konno, S Odake and J Shiraishi for helpful discussions. He also thanks A Kuniba for warm encouragement.

Appendix A. Boson

The following are useful formulae for normal ordering bosons. We set $(z)_{\infty}=\left(z ; q^{4}\right)_{\infty}$ for brevity.

$$
\begin{aligned}
& B_{I,>}(z) E_{<}^{-}(w)=\frac{(q w / z)_{\infty}}{\left(q^{-1} w / z\right)_{\infty}} E_{<}^{-}(w) B_{I,>}(z) \\
& E_{>}^{-}(w) B_{I,<}(z)=\frac{\left(q^{9} z / w\right)_{\infty}}{\left(q^{7} z / w\right)_{\infty}} B_{I,<}(z) E_{>}^{-}(w) \\
& B_{I,>}(z) E_{<}^{+}(w)=\frac{\left(q^{-3} w / z\right)_{\infty}}{\left(q^{-1} w / z\right)_{\infty}} E_{<}^{+}(w) B_{I,>}(z) \\
& E_{>}^{+}(w) B_{I,<}(z)=\frac{\left(q^{5} z / w\right)_{\infty}}{\left(q^{7} z / w\right)_{\infty}} B_{I,<}(z) E_{>}^{+}(w) \\
& B_{I I,>}(z) E_{<}^{+}(w)=\frac{\left(q^{-1} w / z\right)_{\infty}}{\left(q^{-3} w / z\right)_{\infty}} E_{<}^{+}(w) B_{I I,>}(z)
\end{aligned}
$$

$$
\begin{aligned}
& E_{>}^{+}(w) B_{I I,<}(z)=\frac{\left(q^{3} z / w\right)_{\infty}}{(q z / w)_{\infty}} B_{I I,<}(z) E_{>}^{+}(w) \\
& B_{I I,>}(z) E_{<}^{-}(w)=\frac{\left(q^{-1} w / z\right)_{\infty}}{(q w / z)_{\infty}} E_{<}^{-}(w) B_{I I,>}(z) \\
& E_{>}^{-}(w) B_{I I,<}(z)=\frac{\left(q^{3} z / w\right)_{\infty}}{\left(q^{5} z / w\right)_{\infty}} B_{I I,<}(z) E_{>}^{-}(w) \\
& F_{I I,>}(z) E_{<}^{-}(w)=\left(1-\frac{w}{q^{2} z}\right) E_{<}^{-}(w) F_{I I,>}(z) \\
& E_{>}^{-}(w) F_{I I,<}(z)=\left(1-\frac{q^{2} z}{w}\right) F_{I I,<}(z) E_{>}^{-}(w) \\
& F_{I I,>}(z) E_{<}^{+}(w)=\frac{1}{1-q^{-4} w / z} E_{<}^{+}(w) F_{I I,>}(z) \\
& E_{>}^{+}(w) F_{I I,<}(z)=\frac{1}{1-z / w} F_{I I,<}(z) E_{>}^{-}(w) \\
& E_{>}^{-}\left(w_{1}\right) E_{<}^{+}\left(w_{2}\right)=\frac{1}{1-w_{2} / w_{1}} E_{<}^{+}\left(w_{2}\right) E_{>}^{-}\left(w_{1}\right) \\
& E_{>}^{+}\left(w_{2}\right) E_{<}^{-}\left(w_{1}\right)=\frac{1}{1-w_{1} / w_{2}} E_{<}^{-}\left(w_{1}\right) E_{>}^{+}\left(w_{2}\right) .
\end{aligned}
$$

Appendix B. Fermion

For $\Omega_{R}^{N S}(z)$, we show the equations corresponding to the ones from (51) to (56)

$$
\begin{align*}
& \tilde{\phi}^{R^{\prime}}(w) \Omega_{N S}^{R}\left(q^{-4}\right)=\Omega_{N S}^{R}\left(q^{-4}\right) \tilde{\phi}^{N S^{\prime}}(w) \tag{58}\\
& \tilde{\phi}^{R^{\prime}}(w)=\frac{\left(q / w ; q^{4}\right)_{\infty}}{\left(q^{3} / w ; q^{4}\right)_{\infty}} \phi^{R}(w) \tag{59}\\
& \tilde{\phi}^{N S^{\prime}}(w)=(-1)^{1 / 2} w^{-1 / 2} \frac{\left(q w ; q^{4}\right)_{\infty}}{\left(q^{3} w ; q^{4}\right)_{\infty}} \phi^{N S}(w) \tag{60}\\
& \langle R| \tilde{\phi}_{n}^{R^{\prime}}=0(n<0) \quad\langle R| \tilde{\phi}_{0}^{R^{\prime}}=\langle R| \quad \tilde{\phi}_{n}^{N S^{\prime}}|N S\rangle=0 \\
& \langle R| \tilde{\phi}^{R^{\prime}}(z) \tilde{\phi}^{R^{\prime}}(w) \Omega_{N S}^{R}\left(q^{-4}\right)|N S\rangle=\frac{1-q / z}{1-q^{2} w / z}+\frac{1-q^{-1} / z}{1-q^{-2} w / z}-1 \\
& \langle R| \phi_{n}^{R} \phi_{m}^{R} \Omega_{N S}^{R}\left(q^{-4}\right)|N S\rangle=X_{n, m} \gamma_{n} \gamma_{m} q^{n+m}(n, m \geqslant 0) \\
& \langle R| \phi_{n}^{R} \Omega_{N S}^{R}\left(q^{-4}\right) \phi_{-k-1 / 2}^{N S}|N S\rangle=(-1)^{1 / 2} X_{-k-1 / 2, n} \gamma_{n} \gamma_{k} q^{n+k} \\
& \langle R| \Omega_{N S}^{R}\left(q^{-4}\right) \phi_{-k-1 / 2}^{N S} \phi_{-l-1 / 2}^{N S}|N S\rangle=X_{l+1 / 2, k+1 / 2} \gamma_{l} \gamma_{k} q^{l+k} \quad(n, k \geqslant 0) \\
&
\end{align*}
$$

Appendix C. Calculation of equation (54)

We show details of calculation of (54). From (21)

$$
\begin{aligned}
& \langle N S| \Omega_{R}^{N S}\left(q^{-4}\right) \phi^{R}(z) \phi^{R}(w)|R\rangle \\
& \quad=\frac{1}{f_{+}(z) f_{+}(w)}\left\{\frac{1-q w}{1-q^{2} w / z}+\frac{1-q^{-1} w}{1-q^{-2} w / z}-1\right\}=\sum_{k \geqslant 0, l \geqslant 0} \gamma_{k}(q z)^{k} \gamma_{l}(q w)^{l}
\end{aligned}
$$

$$
\begin{aligned}
& \times\left\{\sum_{a \geqslant 0}\left((1-q w)\left(\frac{q^{2} w}{z}\right)^{a}+(1-w / q)\left(\frac{w}{q^{2} z}\right)^{a}\right)-1\right\} \\
= & \sum_{0 \leqslant a \leqslant m} \gamma_{n+a} \gamma_{m-a} \eta_{a} q^{n+m} z^{n} w^{m}-\sum_{0 \leqslant a \leqslant m-1} \gamma_{n+a} \gamma_{m-a-1}\left(q^{2 a}+q^{-2(a+1)}\right) \\
& \times q^{n+m} z^{n} w^{m}-\gamma_{n} \gamma_{m} z^{n} w^{m} .
\end{aligned}
$$

Hence the equation to be proved is
$X_{n, m} \gamma_{n} \gamma_{m}=\sum_{0 \leqslant a \leqslant m} \gamma_{n} \gamma_{m} \eta_{a}-\sum_{0 \leqslant a \leqslant m-1} \gamma_{n+a} \gamma_{m-a-1}\left(q^{2 a}+q^{-2(a+1)}\right)-\gamma_{n} \gamma_{m} z^{n} w^{m}$
which is equivalent to

$$
\begin{equation*}
X_{n, m}=1+\left(1-t^{-1}\right)\left(1+t^{2 n}\right) \sum_{1 \leqslant a \leqslant m} \frac{\left(t^{1+2 n} ; t^{2}\right)_{a-1}}{\left(t^{2+2 n} ; t^{2}\right)_{a-1}} \frac{\left(t^{2 m-2 a+2} ; t^{2}\right)_{a}}{\left(t^{2 m-2 a+1} ; t^{2}\right)_{a}} \frac{t^{a}}{1-t^{2(n+a)}} \tag{61}
\end{equation*}
$$

where we set $t=q^{2}$. It can be proved by induction with respect to k that the summation over $a=m, m-1, \ldots, m-k$ yields

$$
t^{m-k} \frac{\left(t^{1+2 n} ; t^{2}\right)_{m-k-1}}{\left(t^{2+2 n} ; t^{2}\right)_{m-k-1}} \frac{\left(t^{2 k+2} ; t^{2}\right)_{m-k}}{\left(t^{2 k+1} ; t^{2}\right)_{m-k}} \frac{\sum_{j=0}^{k} t^{2 j}}{1-t^{2(n+k)}}
$$

Setting $k=m-1$ we can see that the right-hand side of (61) is equal to $\frac{t^{2 m}-t^{2 n}}{1-t^{2(n+m)}}$.

References

[1] Davies B, Foda O, Jimbo M, Miwa T and Nakayashiki A 1993 Diagonalization of the $X X Z$ Hamiltonian by vertex operators Commun. Math. Phys. 15189
[2] Jimbo M, Miki K, Miwa T and Nakayashiki A 1992 Correlation functions of the $X X Z$ model for $\Delta<-1$ Phys. Lett. A 168256
[3] Jimbo M and Miwa T 1993 Algebraic Analysis of Solvable Lattice Models (Providence, RI: American Mathematical Society)
[4] Idzumi M 1994 Level two irreducible representations of $U_{q}(\hat{\mathfrak{s} l}(2))$, vertex operators, and their correlations Int. J. Mod. Phys. A 94449
[5] Idzumi M 1993 Correlation functions of the spin-1 analog of the XXZ model Preprint hep-th/9307129
[6] Foda O, Jimbo M, Miwa T, Miki K and Nakayashiki A 1994 Vertex operators in solvable lattice models J. Math. Phys. 3513
[7] Jimbo M and Shiraishi J 1998 A Coset-type construction for the deformed Virasoro algebra Lett. Math. Phys. 43173
[8] Frenkel I B and Reshetikhin N Y 1992 Quantum affine algebras and holonomic difference equations Commun. Math. Phys. 1461
[9] Date E, Jimbo M and Okado M 1993 Crystal base and q-vertex operators Commun. Math. Phys. 15547
[10] Friedan D, Qiu Z and Shenker S 1985 Superconformal invariance in two dimensions and the tricritical Ising model Phys. Lett. 151B 37
Corrigan E F and Olive D I 1972 Fermion-meson vertices in dual theories Nuovo Cimento A 11749
Corrigan E F and Goddard P 1973 Gauge conditions in the dual fermion model Nuovo Cimento A 18339
Kato M and Matsuda S 1988 Null field construction in conformal and superconformal algebras Adv. Stud. Pure Math. 16205
[11] Drinfeld V G 1988 A new realization of Yangians and quantized affine algebras Sov. Math. Dokl. 36212
[12] Chari V and Pressley A 1991 Quantum affine algebra Commun. Math. Phys. 142261

[^0]: $\dagger[\mathrm{A}, \mathrm{B}]=\mathrm{AB}-\mathrm{BA}$.
 $\dagger \dagger\{\mathrm{A}, \mathrm{B}\}=\mathrm{AB}+\mathrm{BA}$.

